Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.218
Filtrar
1.
Sci Total Environ ; : 173193, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38744393

RESUMO

O3 pollution in China has become prominent in recent years, and it has become one of the most challenging issues in air pollution control. We used data on atmospheric pollutants and meteorology from 2019 to 2021 to build an interpretable random forest (RF) model, applying this model to predict O3 concentration in 2022 in five cities in the Southwest North China Plain. The model was also used to identify and explain the influence of various factors on O3 formation. The correlation coefficient R2 between the predicted O3 concentration and observed O3 concentration was 0.82, the MAE was 15.15 µg/m3, and the RMSE was 20.29 µg/m3, indicating that the model can effectively predict O3 concentration in the studying area. The results of correlation analysis, feature importance, and the driving factor analysis from SHapley Additive exPlanations (SHAP) model indicated that temperature (T), NO2, and relative humidity (RH) are the top three features affecting O3 prediction, while the weights of wind speed and wind direction were relatively low. Thus, O3 in the southwestern region of Henan may mainly come from the formation of local photochemical activities. The dominant factors behind O3 also varied in different seasons. In spring and autumn, O3 pollution is more likely to occur under high NO2 concentration and high-temperature conditions, while in summer, it is more likely to occur under high-temperature and precipitation-free weather. In winter, NO2 is the dominant factor in O3 formation. Finally, the interpretable RF model is used to predict future O3 concentration based on features provided by Community Multiscale Air Quality (CMAQ) and Weather Research & Forecast (WRF) model, and the simulation performance of CMAQ on O3 concentration is enhanced to a certain extent, improving the prediction of future O3 pollution situations and guiding pollution control.

2.
Sci Rep ; 14(1): 10151, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698084

RESUMO

Product assembly involves extensive production data that is characterized by high dimensionality, multiple samples, and data imbalance. The article proposes an edge computing-based framework for monitoring product assembly quality in industrial Internet of Things. Edge computing technology relieves the pressure of aggregating enormous amounts of data to cloud center for processing. To address the problem of data imbalance, we compared five sampling methods: Borderline SMOTE, Random Downsampling, Random Upsampling, SMOTE, and ADASYN. Finally, the quality monitoring model SMOTE-XGBoost is proposed, and the hyperparameters of the model are optimized by using the Grid Search method. The proposed framework and quality control methodology were applied to an assembly line of IGBT modules for the traction system, and the validity of the model was experimentally verified.

3.
BMC Pregnancy Childbirth ; 24(1): 339, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702596

RESUMO

OBJECTIVE: This study aimed to compare the per OPU clinical outcomes for transfer of Day 3 double cleavage-stage embryos (DET) and Day 5 single blastocyst-stage (SBT) in patients with five or fewer good quality embryos on day 3 per occyte pick-up cycle (OPU) in antagonist cycles with consideration of blastocyst formation failure. METHODS: This was a retrospective, observational cohort study of 2,116 cases of OPU treated with antagonist protocol in the affiliated Chenggong Hospital of Xiamen University between January 2013 and December 2020. DET was performed in 1,811cycles and SBT was performed in 305 cycles. The DET group was matched to the SBT group by propensity score (PS) matching according to multiple maternal baseline covariates. After PS matching, there were 303 ET cycles in each group. The primary outcomes were the cumulative live birth rate (CLBR), cumulative multiple pregnancy rate(CMPR)per OPU and the number of ET to achieve live birth per OPU. Secondary outcomes were the percentage of clinical pregnancy(CPR), live birth rate(LBR), multiple pregnancy rate(MPR). RESULTS: Following PS mating, the CLBR was slightly higher (48.8% versus 40.3% ; P = 0.041) and the CMPR was significantly higher in the DET group compared to SBT group(44.2% versus 7.9%, P < 0.001). The CPR, LBR and MPR per fresh transfer were higher in DET group compared to SBT group(50.2% versus 28.7%; 41.3% versus 21.5%;29.6% versus 0%, P < 0.001). The number of ET to achieve live birth per OPU in SBT group was obiviously more than in DET group(1.48 ± 0.578 versus 1.22 ± 0.557 ,P < 0.001). CONCLUSION: With a marginal difference cumulative live birth rate, the lower live birth rate per fresh transfer and higher number of ET per OPU in the SBT group suggested that it might take longer time to achieve a live birth with single blastocyst strategy. A trade-off decision should be made between efficiency and safety.


Assuntos
Fase de Clivagem do Zigoto , Transferência Embrionária , Taxa de Gravidez , Pontuação de Propensão , Humanos , Estudos Retrospectivos , Feminino , Gravidez , Adulto , Transferência Embrionária/métodos , Transferência de Embrião Único/métodos , Nascido Vivo , Blastocisto , Indução da Ovulação/métodos
4.
Heliyon ; 10(9): e30296, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694132

RESUMO

This study aims to investigate the influence of pre-entrepreneurial career mobility frequency and job changes among returning migrant workers (RMWs) on the innovation level of enterprises, with a particular focus on the mediating role of urban social capital accumulated by RMWs. Using data from the "current entrepreneurial status of RMWs", we applied an ordered probit model to validate our hypotheses. To address endogeneity, a recursive bivariate probit model was used, and stepwise regression combined with bootstrap methods was employed to ascertain the mediating influence of urban social capital. Our results demonstrate a significant positive correlation (P < 0.01) between pre-entrepreneurial career mobility frequency and the innovation level of enterprises among RMWs. However, there's a notable negative correlation (P < 0.01) between experiences as elementary workers and enterprise innovation level, while technical and marketing roles correlate positively (P < 0.01) with enterprise innovation level. Urban social capital mediates the relationship between career mobility and enterprise innovation level, suggesting that career mobility enhance urban social capital accumulation, influencing RMWs' enterprise innovation levels. This empirical evidence holds even after robustness tests. We further observed that RMWs with fewer than three career moves lean towards low level of enterprise innovation, while those with three or more gravitate towards high level of enterprise innovation. This study advances the theory of career mobility and enriches the understanding of enterprise innovation levels. Additionally, it provides critical theoretical insights for prospective RMWs entrepreneurs in strategizing their career mobility and job changes. Policy implications suggest that, in addition to providing entrepreneurial support, the government should facilitate pre-entrepreneurial career mobility channels for migrant workers and consider the transition from rural to urban employment as a socialized ritual for RMWs engaging in entrepreneurship.

5.
Psychoradiology ; 4: kkae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694267

RESUMO

Background: Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective: We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods: We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results: We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76-0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion: We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.

6.
iScience ; 27(5): 109733, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38689641

RESUMO

Intervertebral disc is a highly rhythmical tissue. As a key factor linking biorhythm and inflammatory response, the shielding effect of NR1D1 in the process of intervertebral disc degeneration remains unclear. Here, we first confirmed that NR1D1 in the nucleus pulposus tissue presents periodic rhythmic changes and decreases in expression with intervertebral disc degeneration. Second, when NR1D1 was activated by SR9009 in vitro, NLRP3 inflammasome assembly and IL-1ß production were inhibited, while ECM synthesis was increased. Finally, the vivo experiments further confirmed that the activation of NR1D1 can delay the process of disc degeneration to a certain extent. Mechanistically, we demonstrate that NR1D1 can bind to IL-1ß and NLRP3 promoters, and that the NR1D1/NLRP3/IL-1ß pathway is involved in this process. Our results demonstrate that the activation of NR1D1 can effectively reduce IL-1ß secretion, alleviate LPS-induced NPMSC pyroptosis, and protect ECM degeneration.

7.
Front Pharmacol ; 15: 1379338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738180

RESUMO

Background: Chinese patent medicine is commonly used in China as an important treatment mechanism to thwart the progression of chronic kidney disease (CKD) stages 3-5, among which Niaoduqing granules are a representative Chinese patent medicine; however, its long-term efficacy on CKD prognosis remains unclear. Methods: Patients were grouped according to Niaoduqing granule prescription duration (non-Niaoduqing granule (non-NDQ) group vs Niaoduqing granule (NDQ) group). Serum creatinine (SCr) variation was compared using a generalized linear mixed model (GLMM). Multivariate Cox regression models were constructed, adjusting for confounding factors, to explore the risk of composite outcomes (receiving renal replacement therapy (RRT) or having an estimated glomerular filtration rate (eGFR)<5 mL/min/1.73 m2, ≥50% decline in the eGFR from the baseline, and doubling of SCr) in individuals consuming Niaoduqing granules. Results: A total of 1,271 patients were included, with a median follow-up duration of 29.71 (12.10, 56.07) months. The mean SCr Z-scores for the non-NDQ group and NDQ group were -0.175 and 0.153, respectively, at baseline (p = 0.015). The coefficients of the NDQ group from visit 1 to visit 5 were -0.207 (95% CI: -0.346, -0.068, p = 0.004), -0.214 (95% CI: 0.389, -0.039, p = 0.017), -0.324 (95% CI: 0.538, -0.109, p = 0.003), -0.502 (95% CI: 0.761, -0.243, p = 0.000), and -0.252 (95% CI: 0.569, 0.065, p = 0.119), respectively. The survival probability was significantly higher in the NDQ group (p = 0.0039). Taking Niaoduqing granules was a significant protective factor for thwarting disease progression (model 1: HR 0.654 (95% CI 0.489-0.875, p = 0.004); model 2: HR 0.646 (95% CI 0.476, 0.877, p = 0.005); and model 3: HR 0.602 (95% CI 0.442, 0.820, p = 0.001)). Conclusion: The long-term use of Niaoduqing granules improved SCr variation and lowered the risk of CKD progression by 39.8%.

8.
Food Funct ; 15(9): 4832-4851, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38623620

RESUMO

This study aimed to assess the impact of Lactobacillaceae (L or H represents a low or high dose), inulin (I), and polydextrose (P) combined with aerobic exercise (A) on the composition of the gut microbiota and metabolic profiles in db/db mice. After a 12-week intervention, LIP, LIPA, and HIPA groups exhibited significant improvements in hyperglycemia, glucose tolerance, insulin resistance, inflammatory response, and short-chain fatty acid (SCFA) and blood lipid levels compared to type 2 diabetes mice (MC). After treatment, the gut microbiota composition shifted favorably in the treatment groups which significantly increased the abundance of beneficial bacteria, such as Bacteroides, Blautia, Akkermansia, and Faecalibaculum, and significantly decreased the abundance of Proteus. Metabolomics analysis showed that compared to the MC group, the contents of 5-hydroxyindoleacetic acid, 3-hydroxysebacic acid, adenosine monophosphate (AMP), xanthine and hypoxanthine were significantly decreased, while 3-ketosphinganine, sphinganine, and sphingosine were significantly increased in the LIP and LIPA groups, respectively. Additionally, LIP and LIPA not only improved sphingolipid metabolism and purine metabolism pathways but also activated AMP-activated protein kinase to promote ß-oxidation by increasing the levels of SCFAs. Faecalibaculum, Blautia, Bacteroides, and Akkermansia exhibited positive correlations with sphingosine, 3-ketosphinganine, and sphinganine, and exhibited negative correlations with hypoxanthine, xanthine and AMP. Faecalibaculum, Blautia, Bacteroides, and Akkermansia may have the potential to improve sphingolipid metabolism and purine metabolism pathways. These findings suggest that the synergism of Lactobacillaceae, inulin, polydextrose, and aerobic exercise provides a promising strategy for the prevention and management of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Inulina , Lactobacillaceae , Condicionamento Físico Animal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Inulina/farmacologia , Hiperglicemia/metabolismo , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Lactobacillaceae/metabolismo , Glucanos/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação
9.
Front Plant Sci ; 15: 1357442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606069

RESUMO

Whole-crop wheat (Triticum aestivum, WCW) has a high nutritional value and digestibility. No-tillage (NT) can reduces energy and labor inputs in the agricultural production process, thus decreasing production costs. There are many studies on planting techniques of WCW at present, few being on no-tillage planting. This study aimed to compare the effects of different tillage methods and maturity stages on the yield, nutritive value, and silage fermentation quality of WCW. The experiment included two tillage methods (NT; conventional tillage, CT), two maturity stages (flowering stage; milk stage), and three years (2016-2017; 2017-2018; 2018-2019). Years had a strong influence on the yield and nutritional composition of WCW. This was mainly related to the amount of rainfall, as it affects the seedling emergence rate of wheat. Although tillage methods showed no significant effects on the yield, plant height, and stem number per plant of WCW (P > 0.05), compared to CT, the dry matter (DM) and crude protein (CP) yields of NT decreased by 0.74 t/ha and 0.13 t/ha. Tillage methods showed no significant effects on the nutritive composition of WCW (P > 0.05). The WCW at the milk stage had greater DM (5.25 t/ha) and CP (0.60 t/ha) yields than that at the flowering stage (3.19 t/ha and 0.39 t/ha) (P< 0.05). The acid detergent fiber concentration of WCW decreased by 34.5% from the flowering to the milk stage, whereas water-soluble carbohydrates concentration increased by 50.6%. The CP concentration at the milk stage was lower than that at the flowering stage (P< 0.05). The lactic acid concentration of NT (17.1 g/kg DM) silage was lower than that of CT (26.6 g/kg DM) silage (P< 0.05). The WCW silage at the milk stage had a lower NH3-N concentration (125 g/kg TN) than that at the flowering stage (169 g/kg TN) (P< 0.05). Wheat sown by NT and CT was of similar yield and nutritional value, irrespective of harvest stages. WCW harvested at the milk stage had greater yield and better nutritional composition and silage fermentation quality than that at the flowering stage. Based upon the results of the membership function analysis, no-tillage sowing of wheat was feasible and harvesting at milk stage was recommended.

10.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676206

RESUMO

Autocollimators are widely used optical axis-measuring tools, but their measurement errors increase significantly when measuring under non-leveled conditions and they have a limited measurement range due to the limitations of the measurement principle. To realize axis measurement under non-leveled conditions, this paper proposes an autocollimator axis measurement method based on the strapdown inertial navigation system (SINS). First, the measurement model of the system was established. This model applies the SINS to measure the change in attitude of the autocollimator. The autocollimator was then applied to measure the angular relationship between the measured axis and its own axis, based on which the angular relationship of the axis was measured via computation through signal processing and data fusion in a multi-sensor system. After analyzing the measurement errors of the system model, the Monte Carlo method was applied to carry out a simulation analysis. This showed that the majority of the measurement errors were within ±0.002° and the overall measurement accuracy was within ±0.006°. Tests using equipment with the same parameters as those used in the simulation analysis showed that the majority of the measurement errors were within ±0.004° and the overall error was within ±0.006°, which is consistent with the simulation results. This analysis proves that this method solves the problem of the autocollimator being unable to measure the axis under non-leveled conditions and meets the needs of axis measurement with the application of autocollimators under a moving base.

11.
J Environ Manage ; 358: 120936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652989

RESUMO

Manure replacing synthetic fertilizer is a viable practice to ensure crop yield and increase soil organic carbon (SOC), but its impact on greenhouse gas (GHG) emissions is inconsistent, thus remains its effect on CF unclear. In this study, a 7-year field experiment was conducted to assess the impact of replacing synthetic fertilizer with manure on crop productivity, SOC sequestration, GHG emissions and crop CF under winter wheat-summer maize cropping system. Five treatments were involved: synthetic nitrogen, phosphorus, and potassium fertilizer (NPK) and 25%, 50%, 75%, and 100% of manure replacing synthetic N (25%M, 50%M, 75%M, and 100%M). Compared with NPK treatment, 25%M and 50%M treatments maintained annual yield (winter wheat plus summer maize) and sustainable yield index (SYI), but 75%M and 100%M treatments significantly decreased annual yield, and 100%M treatment also significantly reduced annual SYI. The SOC content exhibited a significant increasing trend over years in all treatments. After 7 years, SOC storage in manure treatments increased by 3.06-11.82 Mg ha-1 relative to NPK treatment. Manure treatments reduced annual GHG emissions by 14%-60% over NPK treatment. The CF of the cropping system ranged from 0.16 to 0.39 kg CO2 eq kg-1 of grain without considering SOC sequestration, in which the CF of manure treatments lowered by 18%-58% relative to NPK treatment. When SOC sequestration was involved in, the CF varied from -0.39 to 0.37 kg CO2 eq kg-1 of grain, manure treatments significantly reduced the CF by 22%-208% over NPK treatment. It was concluded that replacing 50% of synthetic fertilizer with manure was a sound option for achieving high crop yield and SYI but low CF under the tested cropping system.


Assuntos
Pegada de Carbono , Fertilizantes , Esterco , Solo , Triticum , Zea mays , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Solo/química , Carbono , Estações do Ano , Nitrogênio , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Gases de Efeito Estufa
12.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
13.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610237

RESUMO

Multispectral thermometry is based on the law of blackbody radiation and is widely used in engineering practice today. Temperature values can be inferred from radiation intensity and multiple sets of wavelengths. Multispectral thermometry eliminates the requirements for single-spectral and spectral similarity, which are associated with two-colour thermometry. In the process of multispectral temperature inversion, the solution of spectral emissivity and multispectral data processing can be seen as the keys to accurate thermometry. At present, spectral emissivity is most commonly estimated using assumption models. When an assumption model closely matches an actual situation, the inversion of the temperature and the accuracy of spectral emissivity are both very high; however, when the two are not closely matched, the inversion result is very different from the actual situation. Assumption models of spectral emissivity exhibit drawbacks when used for thermometry of a complex material, or any material whose properties dynamically change during a combustion process. To address the above problems, in the present study, we developed a multispectral thermometry method based on optimisation ideas. This method involves analysing connections between measured temperatures of each channel in a multispectral temperature inversion process; it also makes use of correlations between multispectral signals at different temperatures. In short, we established a multivariate temperature difference correlation function based on the principles of multispectral radiometric thermometry, using information correlations between data for each channel in a temperature inversion process. We then established a high-precision thermometry model by optimising the correlation function and correcting any measurement errors. This method simplifies the modelling process so that it becomes an optimisation problem of the temperature difference function. This also removes the need to assume the relationships between spectral emissivity and other physical quantities, simplifying the process of multispectral thermometry. Finally, this involves correction of the spectral data so that any impact of measurement error on the thermometry is reduced. In order to verify the feasibility and reliability of the method, a simple eight-channel multispectral thermometry device was used for experimental validation, in which the temperature emitted from a blackbody furnace was identified as the standard value. In addition, spectral data from the 468-603 nm band were calibrated within a temperature range of 1923.15-2273.15 K, resulting in multispectral thermometry based on optimisation principles with an error rate of around 0.3% and a temperature calculation time of less than 3 s. The achieved level of inversion accuracy was better than that obtained using either a secondary measurement method (SMM) or a neural network method, and the calculation speed achieved was considerably faster than that obtained using the SMM method.

14.
Chem Sci ; 15(15): 5653-5659, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638230

RESUMO

Since ethylene (C2H4) is important feedstock in the chemical industry, developing economical and energy-efficient adsorption separation techniques based on ethane (C2H6)-selective adsorbents to replace the energy-intensive cryogenic distillation is highly demanded, which however remains a daunting challenge. While previous anionic boron cluster hybrid microporous materials display C2H4-selective features, we herein reported that the incorporation of a neutral para-carborane backbone and aliphatic 1,4-diazabicyclo[2.2.2]octane (DABCO) enables the reversed adsorption of C2H6 over C2H4. The generated carborane-hybrid microporous material ZNU-10 (ZNU = Zhejiang Normal University) is highly stable in humid air and maintains good C2H6/C2H4 separation performance under high humidity. Gas loaded single crystal structure and density-functional theory (DFT) calculations revealed that the weakly polarized carborane and DABCO within ZNU-10 induce more specific C-Hδ+⋯Hδ--B dihydrogen bonds and other van der Waals interactions with C2H6, while the suitable pore space allows the high C2H6 uptake. Approximately 14.5 L kg-1 of polymer grade C2H4 can be produced from simulated C2H6/C2H4 (v/v 10/90) mixtures under ambient conditions in a single step, comparable to those of many popular materials.

15.
J Pharm Anal ; 14(3): 389-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618248

RESUMO

Antibody-drug conjugates (ADCs) are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells, thereby attracting considerable attention in precise oncology therapy. Cetuximab (Cet) is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma (cSCC); however, its anti-tumor activity is limited to a single use. Cisplatin (CisPt) shows good curative effects; however, its adverse effects and non-tumor-targeting ability are major drawbacks. In this study, we designed and developed a new ADC based on a new cytotoxic platinum (IV) prodrug (C8Pt(IV)) and Cet. The so-called antibody-platinum (IV) prodrugs conjugates, named Cet-C8Pt(IV), showed excellent tumor targeting in cSCC. Specifically, it accurately delivered C8Pt(IV) into tumor cells to exert the combined anti-tumor effect of Cet and CisPt. Herein, metabolomic analysis showed that Cet-C8Pt(IV) promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells, thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum (IV) prodrugs conjugates.

16.
ACS Appl Mater Interfaces ; 16(15): 19014-19025, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573769

RESUMO

Rechargeable magnesium batteries (RMBs) are one of the most promising "post-lithium" battery technologies, but the electrochemical performance is still far from expectation due to the sluggish reaction kinetics of divalent Mg2+ ions. Herein, we report a low-cost, high-performance Mg-organic battery based on the combination of a fluorinated alkoxyaluminate electrolyte and a carbonyl polymer cathode material. First, the one-pot synthesized Mg[Al(HFIP)4]2 (HFIP = hexafluoro-2-propanol) is proved superior to the Mg[B(HFIP)4]2 analogue in both Mg anode compatibility and electrochemical window, as the electrolyte salt in the G2-DME (G2 = diethylene glycol dimethyl ether; DME = 1,2-dimethoxyethane) mixture solvent. Second, a simple wet grinding method is proposed to effectively improve the dispersion uniformity of the poly(benzoquinone-pyrrole) (PBQPy) active material in the cathode. Third, the elaborate Mg-PBQPy battery exhibits superior electrochemical performance within 0.4-3.0 V, including a high reversible capacity of 197 mA h g-1, a high average discharge voltage of 1.6 V, and a high capacity retention of 71% after 500 cycles. Finally, based on various electrochemical analysis and ex situ characterization results, we propose a general microscopic structure evolution model to reveal the electrochemical behaviors of carbonyl polymer cathode in RMBs, including the swelling of polymer active material, trapping of Mg2+ ions, and reversible redox reaction.

17.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559023

RESUMO

During endosomal recycling, Sorting Nexin 17 (SNX17) facilitates the transport of numerous membrane cargo proteins by tethering them to the Retriever complex. Despite its importance, the mechanisms underlying this interaction have remained elusive. Here, we report the structure of the Retriever-SNX17 complex determined using cryogenic electron microscopy (cryo-EM). Our structure reveals that the C-terminal tail of SNX17 engages with a highly conserved interface between the VPS35L and VPS26C subunits of Retriever. Through comprehensive biochemical, cellular, and proteomic analyses, we demonstrate that disrupting this interface impairs the Retriever-SNX17 interaction, subsequently affecting the recycling of SNX17-dependent cargos and altering the composition of the plasma membrane proteome. Intriguingly, we find that the SNX17-binding pocket on Retriever can be utilized by other ligands that share a consensus acidic C-terminal tail motif. By showing how SNX17 is linked to Retriever, our findings uncover a fundamental mechanism underlying endosomal trafficking of critical cargo proteins and reveal a mechanism by which Retriever can engage with other regulatory factors.

18.
Clin Nucl Med ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38598494

RESUMO

ABSTRACT: Juxtaglomerular cell tumor or reninoma is an extremely rare, typically benign, renin-secreting tumor of the kidney that causes secondary hypertension. We describe 99mTc-MIBI SPECT/CT findings in a case of juxtaglomerular cell tumor. The renal tumor showed isodensity and photopenia on 99mTc-MIBI SPECT/CT. This case indicates that juxtaglomerular cell tumor can appear cold on 99mTc-MIBI SPECT/CT, mimicking renal cell carcinoma.

19.
ACS Omega ; 9(13): 15339-15349, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585104

RESUMO

As the pathogenesis of cerebral small vessel disease with cognitive impairment (CSVD-CI) remains unclear, identifying effective biomarkers can contribute to the clinical management of CSVD-CI. This study recruited 54 healthy controls (HCs), 60 CSVD-CI patients, and 57 CSVD cognitively normal (CSVD-CN) patients. All participants underwent neuropsychological assessments and multimodal magnetic resonance imaging. Macrophage migration inhibitory factors (MIFs) were assessed in plasma. The least absolute shrinkage and selection operator model was used to determine a composite marker. Compared with HCs or CSVD-CN patients, CSVD-CI patients had significantly increased plasma MIF levels. In CSVD-CI patients, plasma MIF levels were significantly correlated with multiple cognitive assessment scores, plasma levels of blood-brain barrier (BBB)-related indices, white matter hyperintensity Fazekas scores, and the mean amplitude of low-frequency fluctuation in the right superior temporal gyrus. Higher plasma MIF levels were significantly associated with worse global cognition and information processing speed in CSVD-CI patients. The composite marker (including plasma MIF) distinguished CSVD-CI patients from CSVD-CN and HCs with >80% accuracy. Meta-analysis indicated that blood MIF levels were significantly increased in CSVD-CI patients. In conclusion, plasma MIF is a potential biomarker for early identification of CSVD-CI. Plasma MIF may play a role in cognitive decline in CSVD through BBB dysfunction and changes in white matter hyperintensity and brain activity.

20.
Eur J Clin Invest ; : e14212, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591651

RESUMO

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS: We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS: Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS: This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...